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A*

The A* algorithm applies to graphs with weighted edges (non-negative) and a heuristic 
function h which estimates the distance of a node from the goal. 

We use three different scores or values during the search:

g(N) = best known (exact) distance of N from start (sum of edge weights 
in best known path)

h(N) = heuristic estimate of remaining shortest distance to goal

f(N) = g(N) + h(N)  =  combination of exact and estimated distance of path through
node N, increasingly more exact as approach goal; f(N) is 
used to order a priority queue controlling the search. 

A* combines two approaches to search that we have already studied:

Breadth-First Search (single path version of Dijkstra's All Pairs Shortest Path algorithm):

f(N) = g(N)

Best-First Search:

f(N) = g(N)

A*:    f(N) = g(N) + h(N)

where h is assumed to be admissible = never 
overestimates the remaining distance
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A*

h(N) = a specified heuristic function

start, goal = specified nodes in the state space

Closed stores nodes for which a shortest path has been determined (may have to be updated)

Nodes are stored with the length g(N) of the path and back pointers for the paths.

Open stores nodes currently being explored

Open is a priority queue ordered by f(N)
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A*
A* Algorithm Pseudo-Code    

g(start) = 0         # so f(start) = h(start)

Open = [ (f(start), start)  ];      Closed = { (start, g(start), Null) }

while Open not empty:

Current =  Open.pop()           # get minimal element from Open

for each Child of Current:

if Child not in Closed:            # never seen before

g_child = g(Current) + cost(Current,Child);  f_child = g_child + h(Child) 

Add (g_child, Child, Current) to Closed              # record tentative shortest path

Add (f_child, Child) to Open

else if g_child < g(Child):                              # found a shorter path than the one previous stored in Closed

Add (g_child, Child, Current) to Closed              # record better shortest path

if Child == goal:

Report success and reconstruct the solution path back to start

Report Failure
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A*
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A*
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A*



9

A*  Example
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Games and Computer Science

A GAME is “a competitive activity involving skill, 
chance, or endurance on the part of two or more 
persons who play according to a set of rules, usually
for their own amusement or for that of spectators”
(Webster’s)

Game Theory is a branch of mathematics that studies 
multi-player skill and chance games to understand 
economics, political science, networking, etc. 
(situations where entities compete for resources or 
rewards).  

Video Game Programming is a combination of 
physical simulation, animation, video, audio, movie-
making, etc. with some AI Game Programming.

AI Game Programming is a branch of Artificial 
Intelligence which attempts to simulate human 
behavior in a board game such as chess, checkers, 
backgammon, Othello, Go, Connect-4, etc. Games 
involving chance are more difficult....
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AI Game Programming

We will study BOARD GAMES 
and investigate how to use TREE 
SEARCH to simulate how 
humans play such games.

Computers play board games by 
simulating how humans play: they 
search possible moves and 
predict where their opponent 
might move. 

This is called   Adversary Search
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AI Game Programming

This approach works best on games 
in which 

Ø There is a board where pieces
are moved around following 
simple rules.

Ø There are two players (the 
computer is one player);

Ø Each player knows everything 
(“Perfect Information”);

Ø There are no dice or other 
elements of random behavior;

Ø SO: The number of possible 
moves at any position is 
relatively limited, and the 
computer can search the tree of 
all possible moves......
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Adversary Search on Trees

How to describe the possible moves of such a game? Let’s take the 
example of Tic Tac Toe:

Board:

Pieces: O X

Rules:

o Players alternate placing X’s and O’x
in the squares; X goes first;

o The first player to get three pieces in 
a row, column, or diagonal wins. 

Possible representation for Tic Tac
Toe board and pieces:

int [][] board = int[3][3];
int blank = -1;
int O = 0; 
int X = 1;
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Adversary Search on Trees

The collection of all possible game positions can be described by a tree 
(not a binary tree!):

X

Initial Position:

All possible first 
moves by X:

X X
X

X
XX

X X X
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Adversary Search on Trees

The collection of all possible game positions can be described by a tree 
(not a binary tree!):

X

Initial Position:

All 9 possible first 
moves by X:

X X
X

X
XX

X X X

XO O
O

O
XX

O O

All 8 possible 
second moves by 
O:

X X X X
O

X XO
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Adversary Search on Trees

The collection of all possible game positions can be described by a tree 
(not a binary tree!):

X

Initial Position:

All 9 possible first 
moves by X:

X X
X

X
XX

X X X

XO O
O

O
XX

O O

All 8 possible 
second moves by 
O:

X X X X
O

X XO

X
O OO XX O OX X X O X XO

All 7 possible 
third moves by X:

...and so on.....

X X X
X

X X X
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Adversary Search on Trees

You end up with a tree with 9! = 
392,880
games/paths/leaves, one for 
each possible sequence of 
moves. 

But there is a lot of duplication!

There are only 6045 distinct 
boards, and 126 distinct leaves.

We will talk about how to avoid 
such duplication when we 
discuss graphs. For now, we’ll 
punt.....

Initial Position:

All 9 possible first moves by  X:

All 8 second moves by  O:

All 7 third moves by  X:

All 6 possible fourth moves by  O:

etc....

Sometimes the 
levels are called 
“Plies” and 
numbered:

Ply 0

Ply 2

Ply 3

Ply 1
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Adversary Search on Trees

The number of board positions for the games we 
will consider is finite, but sometimes very 
large....

With 32 pieces and 64 squares, a generous 
upper bound on the number of possible chess 
boards is

6433=  2196 ~  1060  = 

1000000000000000000000000000000000000000000000000000000000000

(some chess blogs put the number closer to 
1050) and the paths in the tree are not finite 
(since you can move back to a previous 
position).

For Go, the number is apparently 10360. (For 
comparison, there are about 1082 atoms in the 
visible universe.)

The most serious problem, however, is the 
“branching factor” and the resultant 
combinatorial explosion of nearby positions to 
test......
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Adversary Search on Trees

This is why we consider only two player games 
of “perfect information”—others are too 
difficult!

Every time you roll 2 dice, your game tree 
branches by 12;

If your game has N > 2 players,you would 
have to consider all possible outcomes for a 
sequence of N-1 moves between your own;

Without perfect information (e.g., cards), you 
would have to consider all possible hidden 
pieces of information. 

Combinatorial explosion makes it impossible to 
explore very much of such search spaces.....

Let’s go back to Tic Tac Toe!
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Adversary Search on Trees

In order to search for the best move at a given 
board position, we have to know what we are 
looking for (the winning board positions) and 
when we are getting close to a win:

An Evaluation Function rates board positions:

Eval(board) =>  numeric score (how good is 
this board for me)

with an important assumption of symmetry: 

What’s good for me is bad for my opponent in 
equal measure:
Eval(B) for me  is the same as  -Eval(B) for 
my opponent. 

A winning score is

A losing score is 

∞
-∞

Typically we use ints......

[-Integer.MIN_VALUE,  ....  0 ...... ,Integer.MAX_VALUE]

Punchline: One global eval function is used: one 
player tries to maximize and one tries to minimize!
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Adversary Search on Trees

Typically, we create an evaluation function by

Counting pieces, perhaps weighted by position or 
other characteristic (e.g., mobility, number of pieces 
it can attack) and

Counting patterns (parts of winning configurations), 
again perhaps weighted by importance. 

NOTE: The Eval function must always be symmetric 
(win for me is loss or you), so typically you add the 
count for yourself, and subtract for your opponent. 
You want big positive score, and your opponent 
wants a big negative score.  

Example: For Tic Tac Toe, we could count the 
number of possible rows, columns, and diagonals 
where we could possible move in the future to get a 
win; to make it symmetric, we subtract the similar 
number for our opponent:

X O
X

O
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Adversary Search on Trees

Typically, we create an evaluation function by

Counting pieces, perhaps weighted by position or 
other characteristic (e.g., mobility, number of pieces 
it can attack) and

Counting patterns (parts of winning configurations), 
again perhaps weighted by importance. 

NOTE: The Eval function must always be symmetric 
(win for me is loss or you), so typically you add the 
count for yourself, and subtract for your opponent. 
You want big positive score, and your opponent 
wants a big negative score.  

Example: For Tic Tac Toe, we could count the 
number of possible rows, columns, and diagonals 
where we could possibly move in the future to get a 
win and weight it by the number of our pieces in the 
sequence; to make it symmetric, we subtract the 
similar number for our opponent:

1 + 1 + 1 + 2 (for X)
X O

X

O
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Adversary Search on Trees

Typically, we create an evaluation function by

Counting pieces, perhaps weighted by position or 
other characteristic (e.g., mobility, number of pieces 
it can attack) and

Counting patterns (parts of winning configurations), 
again perhaps weighted by importance. 

NOTE: The Eval function must always be symmetric 
(win for me is loss or you), so typically you add the 
count for yourself, and subtract for your opponent. 
You want big positive score, and your opponent 
wants a big negative score.  

Example: For Tic Tac Toe, we could count the 
number of possible rows, columns, and diagonals 
where we could possibly move in the future to get a 
win and weight it by the number of our pieces in the 
sequence; to make it symmetric, we subtract the 
similar number for our opponent:

5 (for X) – (1 + 1) (for O) = 3
X O

X

O

Eval(B) = Infinity or –Infinity 
if there is a win!
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Adversary Search on Trees

For chess, we could

Weight each piece by kind (pawn = 1, rook = 
10, etc.) and by mobility;

Look for good and bad patterns:

o Many of our pieces in the middle of the 
board( good);

o Pieces which can attack other pieces 
(good);  Etc.

Add your sum and subtract your opponent’s. 
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Min Max Trees

The symmetry of the game 
creates alternating layers in 
the tree, with

Max Levels (      ) – It’s the 
max player’s move, and he 
wants the highest score; 
and

Min Levels(        ) – It’s the 
min player’s move, and he 
wants the lowest score. 

It does not matter who is 
Max and who is Min, but 
let’s assume that the 
computer is always Max; 
the tree thus represents 
what the program sees 
when considering its next 
move…

Max

Max

Min

Min
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Min Max Trees

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, “back up” 
the maximum value of any child; 
and

(C) At Min nodes, back up the 
minimum value of any child.

(3) Choose the move that 
corresponds to the largest child of 
the root (which gave the root its 
value). 

Max

Min

Min

Max
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Min Max Trees

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, “back up” 
the maximum value of any child; 
and

(C) At Min nodes, back up 
the minimum value of any child.

(3) Choose the move that 
corresponds to the largest child 
of the root (which gave the root 
its value). 

Max

Max

Min

Min -31 8 2 -6 5

-∞
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Min Max Trees

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, “back up” 
the maximum value of any child; 
and

(C) At Min nodes, back up 
the minimum value of any child.

(3) Choose the move that 
corresponds to the largest child 
of the root (which gave the root 
its value). 

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5
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Min Max Trees

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, “back up” 
the maximum value of any child; 
and

(C) At Min nodes, back up 
the minimum value of any child.

(3) Choose the move that 
corresponds to the largest child 
of the root (which gave the root 
its value). 

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6
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Min Max Trees

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, “back up” 
the maximum value of any child; 
and

(C) At Min nodes, back up 
the minimum value of any child.

(3) Choose the move that 
corresponds to the largest child 
of the root (which gave the root 
its value). 

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6

8
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Min Max Trees

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, “back up” 
the maximum value of any child; 
and

(C) At Min nodes, back up 
the minimum value of any child.

(3) Choose the move that 
corresponds to the largest child 
of the root (which gave the root 
its value). 

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6

8
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Min Max Trees

The Algorithm:

(1) Generate the tree (more on 
this later!);

(2) Label the nodes by traversing 
the tree post-order and:

(A) At leaf nodes, use the 
eval() function;

(B) At Max nodes, “back up” 
the maximum value of any child; 
and

(C) At Min nodes, back up 
the minimum value of any child.

(3) Choose the move that 
corresponds to the largest child 
of the root (which gave the root 
its value). 

Max

Max

Min

Min -31 8 2 -6 5

-∞1 8 -6 5

-∞ 8 -6

8

Note that all values come from the leaves, and the root’s value comes from the best sequence of 
moves from the Max point of view
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Min-Max Trees

Big Question: How to generate the tree?

Simplest Answer:  Generate tree down to some fixed depth D:
Move chooseMove(Node t) {

int max = -Inf;     Move best; 
for(each move m to a child c of t) {

int val = minMax( c, 1 );
if(val > max) {

best = m; max = val;
}

}
return best;

}

int minMax(Node t, int depth) {
if( t is a leaf node || depth == D)  // leaf node could be

return eval(t);                // because eval(t) = ± Inf
else if( t is max node ) {

int val = -Inf;
for(each child c of t) { 
val = max(val, minMax( c, depth+1 ) );

}
return val;

} else {                      // is a min node
int val = Inf;
for(each child c of t) 
val = min(val, minMax( c, depth+1 ) );

return val;
}

}

D


